Magnetic technique to optimize the design and programming of tiny robots

0 Comments

Assembling a microrobot used to require a pair of needle-nosed tweezers, a microscope, steady hands and at least eight hours. But now University of Toronto Engineering researchers have developed a method that requires only a 3D printer and 20 minutes.

In the lab of Professor Eric Diller, researchers create magnetized microrobots — the size of the head of a pin — that can travel through fluid-filled vessels and organs within the human body. Diller and his team control the motion of these microrobots wirelessly using magnetic fields.

Each microrobot is built by precisely arranging microscopic sections of magnetic needles atop a flat, flexible material. Once deployed, the researchers apply magnetic fields to induce microrobots to travel with worm-like motion through fluid channels, or close its tiny mechanical ‘jaws’ to take a tissue sample.

“These robots are quite difficult and labour-intensive to fabricate because the process requires precision,” says graduate student, Tianqi Xu. “Also because of the need for manual assembly, it’s more difficult to make these robots smaller, which is a major goal of our research.”

https://www.sciencedaily.com/releases/2019/04/190424153651.htm

Categories:
See LinkedIn profile: https://www.linkedin.com/in/arturdziedzic/